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The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is 
studied. These flows depend on two control parameters, which may be taken to be 
the axial Reynolds number R and a Rossby number, q. Marginal stability is realized 
on a curve in the (R, q)-plane, and we explore the entire marginal stability boundary. 
As the flow passes through any point on the marginal stability curve, it undergoes 
a supercritical Hopf bifurcation and the steady base flow is replaced by a travelling 
wave. The envelope of the wave system is governed by a complex Ginzburg-Landau 
equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to 
standing modulations of the linear travelling wavetrain, as well as travelling wave 
modulations of the linear wavetrain. Bands of wavenumbers are identified in which 
the nonlinear modulated waves are subject to a sideband instability. 

1. Introduction 
Although instability and transition to turbulence for flow in a pipe was observed 

by Reynolds (1883) more than a century ago, the phenomenon remains without 
theoretical explanation. This is mainly because the flow appears to be linearly stable 
a t  all Reynolds numbers, as suggested by the results of Gill (1965), Salwen & Grosch 
(1972), and others. The observed instability is consequently attributed to so-far 
unexplained nonlinear effects. Although weakly nonlinear analyses of this problem 
have been attempted (see Davey & Nguyen 1971; Itoh 1977; and Davey 1978) 
objections to these procedures can be raised because there is no linear neutral 
stability point about which a rational amplitude expansion can be carried out 
(Herbert 1983). Numerical simulations by Patera & Orszag (1981) demonstrate, a t  
least for axisymmetric perturbations, that the amplitude expansions constructed 
without benefit of a neutral curve are not valid for this problem. Direct simulations 
allowing for three-dimensional perturbations (Orszag & Patera 1983) have proved 
less illuminating in this problem than corresponding computations for problems, 
such as plane Poiseuille flow, which do enjoy a neutral curve. 

Rotation of the pipe changes the picture entirely. In  this case, Pedley (1968, 1969), 
and simultaneously Joseph & Carmi (1969) showed that the superposition of rigid 
rotation - absolutely stable by itself - with ordinary circular Poiseuille flow, also 
stable, can lead to instability if the rotation rate is high. Mackrodt (1976) later 
suggested that the observed transition in non-rotating pipe flow is due to residual 
swirl in the fluid entering the pipe. He extended previous linear stability results to 
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330 2. Yang and S. Leibovich 

small rotation rates, and showed, both theoretically and experimentally, that pipe 
flow can be linearly unstable in this regime. For large Reynolds number, he found 
that the rotation needed to render the flow unstable is inversely proportional to  the 
Reynolds number. He suggested that the effect of entering swirl might have escaped 
experimental observation since the swirl rate needed to destabilize the flow is small 
for large Reynolds number. 

Since there exists a stability margin for the flow in the rotating pipe - about which 
there is now a great deal known, thanks to the comprehensive linear stability 
analysis of Cotton & Salwen (1981) - one can formulate a rational weakly nonlinear 
analysis for the evolution of the marginally unstable perturbation. Akylas & 
Demurger (1984) treated the weakly nonlinear stability for flow in the rotating pipe 
by an amplitude expansion technique following the analysis of Stuart (1960) and 
Watson (1960) for plane Poiseuille flow. Their aim was to  find out if the bifurcation 
was subcritical or supercritical. If the bifurcation were subcritical, the observed 
transition to  turbulence in the non-rotating pipe flow might be due to the unstable 
solution subcritically bifurcating from the flow in a rotating pipe. Their numerical 
results, which had indicated subcritical bifurcation, were in error, as pointed out by 
Toplosky & Akylas (1988), and by Mahalov & Leibovich (1989, 1991). Toplosky & 
Akylas (1988) numerically computed fully nonlinear solutions to the rotating pipe 
flow in the special case of helical waves. Landman (1990) has extended these fully 
nonlinear solutions to highly supercritical regimes, and has found two-frequency 
solutions, a series of period-doubling bifurcations, and apparently chaotic solutions. 
The helical waves in these studies are two-dimensional solutions, constant on helices 
at each radial location, and periodic in the axial direction : mathematical properties 
of these solutions have been discussed by Mahalov, Titi & Leibovich (1990). 

Our study is a generalization of that of Akylas & Demurger (1984) and parallels 
that of Stewartson & Stuart (1971) who analysed the evolution of wave systems in 
plane Poiseuille flow. We study the nonlinear evolution of a wave packet in the 
vicinity of the entire marginal stability boundary in the (R, q)-plane. The direction 
and nature of the bifurcation is determined, and it is found that the bifurcation is 
supercritical everywhere. The governing equation for the amplitude of the wave 
system, allowing for spatial modulation, is a Ginzburg-Landau equation with 
complex coefficients. Travelling wave solutions of the Ginzburg-Landau equation 
are found and the stability of the solutions to sideband perturbations is analysed 
along the (entire) marginal stability curve. 

The plan of this study is as follows. In $ 2 ,  we formulate the problem. The results 
from linear stability analysis needed in carrying out the weakly nonlinear analysis 
are described in $3. A weakly nonlinear expansion using a multiscale technique is 
carried out in $4, which leads to a complex Ginzburg-Landau equation for the 
perturbation envelope. Modulated travelling wave solutions of the Ginzburg-Landau 
equation and the stability are discussed in 85, and $6 concludes the paper. 

2. Problem formulation 
If length is non-dimensionalized by the radius of the pipe L and velocity by the 

axial velocity at the axis U,  the laminar base flow in a pipe rotating with angular 
velocity 52 is then described in a cylindrical ( x , O ,  r )  coordinate system by 

u= (l-rZ,qr,O), (1) 

where q = QL/U ( 2 )  
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measures the relative strength of rotation. This non-dimensionalization also defines 

(3) 
a Reynolds number R = UL/V,  

where v is the kinematic viscosity of the fluid. Thus, the base flow in a rotating pipe 
is characterized by (R, q).  

Writing the instantaneous velocity field as the sum of the base flow and the 
perturbation field 

v =  u+u ,  

the Navier-Stokes equation and the equation of continuity requires the perturbation 
field ii = (u , v ,  w ; p ) ,  where p is the pressure perturbation, to satisfy the following 
equation : a a a a  

(4) 

where L is the linear part of the differential operator, and N, which is quadratic in 
perturbation velocity, is the nonlinear part of the differential operator. L is a 4 x 4 
matrix, and N is a 4 x 1 vector. The entries of L and N in a cylindrical coordinate 
system are listed in Appendix A. 

The perturbation field should satisfy the no-slip condition a t  the wall of the pipe 
and the uniqueness and regularity conditions at the centre of the pipe. 

3. Temporal linear stability analysis 
Linear stability is governed by (4) with the right-hand side neglected, 

Since the problem is separable in the z- and &directions, the perturbation field may 
be written in normal mode form, i.e. 

ii = APE 
= A[u( r ) ,  v( r ) ,  w( r ) ,  p (  r ) ]  exp [i( kz + m6 - ot)], 

where A is an arbitrary constant, k is the axial wavenumber of the perturbation and 
m is the azimuthal wavenumber of the perturbation ; and w is the complex frequency, 
with its real part being the frequency and the imaginary part being the growth rate. 
In a temporal stability analysis w is regarded as an eigenvalue to be found ; if Im ( w )  
is positive, the flow is linearly unstable. 

The normal mode assumption transforms the partial differential equations ( 5 )  to 
a set of ordinary differential equations given by 

The above equations for the perturbations are supplemented by the following 
boundary conditions. On the wall of the pipe, the no-slip boundary conditions require 

A t  the centre of the pipe, the perturbation must satisfy the following conditions to 
ensure that it be single-valued (see Batchelor & Gill 1962): 

u’(0) = w(0) = w(0)  = p’(0) = 0 for m = 0, 
u(0) = v(O)+imw(O) = p ( 0 )  = 0 for 11721 = 1,  
u(0) = v(0) = w(0) = p(0)  = 0 for m otherwise. 

u(1) = v(1)  = w(1) = 0.  (7) 

(8) 
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The ordinary differential equations and the boundary conditions form an 
eigenvalue problem with w as the eigenvalue and v, as the eigenfunction. Non-trivial 
solutions exist only when w takes some specific values given by 

w = w(R,q;m,k). 

Of the four parameters (R, q ; m, k),  (R, q)  specify the base flow and (m, k) specify the 
wavenumbers of the perturbation. For a given pair of control parameters (R, q )  and 
for a given perturbation (m, k), if Im (0) is less than zero, the flow is stable to  this 
particular perturbation ; if Im (w) is positive, the flow is said to  be linearly unstable 
to the perturbation. For a given pair of (R, q) ,  if the flow is stable to all the possible 
combinations of m and k, the flow is said to  be linearly stable (i.e. i t  is stable to 
infinitesimal perturbations.) The marginal linear stability curve, on which the 
growth rate of the most unstable perturbation is zero, separates the region in the 
(R,q)-plane where the flow is linearly stable from the region where it is linearly 
unstable. 

We briefly review the main linear stability results found by Pedley (1969), 
Mackrodt (1976), and Cotton & Salwen (1981) with the emphasis on the most recent 
of these papers. When plotted on the (R, Rq] plane, unstable motion takes place 
essentially in the quarter plane R > 83, Q = Rq > 27. The marginal stability 
boundaries are not precisely parallel to the R,  6-axes, but are not far from being so. 
The minimum value of R for which instability is possible is 82.9, which is very close 
to the energy stability limit of Joseph & Carmi (1969) of 81.49. The minimurn value 
of fi is 26.96, according to  Mackrodt (1976), and occurs for lklR = 106.6. The modes 
which first become unstable, as either R or k is increased so as to cross from the 
stable to the unstable region, have m = 1. 

Cotton & Salwen (1981) note that the symmetries of the problem imply that for 
any solution of the linear problem for a given set of the parameters (R, q ; m, k), there 
is a solution having the same time history but corresponding to a parameter set with 
the signs of any two of the parameters altered. Thus, there is no loss of generality in 
arbitrarily fixing R,  q and m t o  be positive, while the sign of k is arbitrary. With this 
convention, instability has been found to  be possible only when k is negative. We 
adopt the same convention. 

A spectral method with Chebyshev polynomials as the basis functions is used in 
this study to numerically solve the differential equations. The velocity field and 
pressure are written as 

where y is related to r by y = 2r-  1 so that the domain of definition for y is from - 1 
to 1. The reduction from the differential equations to  a set of algebraic equations is 
made by a Galerkin-Tau projection. To eliminate the coordinate singularities a t  r = 
0, Navier-Stokes equations were multiplied by r2 and the equation of continuity was 
multiplied by r before the projection. The result of the discretization is the following 
generalized eigenvalue problem : 

M( -iio;ik, im; R,q) 9 = A(R,q;m, k) @-iwB(R,q;m, k) 9 = 0 (10) 
where @ = (ul, u2, . . ., uN, vl, v2, . . ., v N ,  wl, we, . . ., wN, pl,p2, . . . ,pN). The entries of the 
complex matrices A and B are shown in Appendix B. 
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FIGURE 1.  Marginal stability curve, showing linearly stable and unstable regions. 

R m k Wi 

156.0 0.2147 1 - 1.0 0.33 x 10-4 
10 700 0.002 52 1 -0.01 0.17 x 10-5 

110.0 149.1 3 -0.01 -0.84 x 
23 300 0.003 00 3 -0.01 0.53 x 

356.0 5.0 10 - 1.0 -0.24 x lo-' 
1510.0 0.3252 10 - 1.0 0.50 x 10-4 

TABLE 1. A comparison- with Cotton & Salwen's (1981) res-ults. (Cotton & Selwen use 
(R,  a)  as the control parameters with a = qR.) 

The resulting generalized eigenvalue problem was solved either by the QZ method 
using the IMSL subroutine EIGZC or by using the Inverse Power Iteration when a 
good guess of the eigenvalue is available. The results were compared with those from 
Cotton & Salwen (1981) who found the neutral points in ( R , q ; m ,  k )  space. Table 1 
lists some combinations of ( R , q ; k , m )  for the neutral point found by Cotton & 
Salwen, i.e. points where they find the growth rates to be zero. We solved the linear 
eigenvlaue problem at the same parameters, and the resulting growth rates are also 
listed in table 1. They are less than which leads to three-figure accuracy for the 
combinations of parameters (R,  q ;  m, k ) ,  which is the reported accuracy in Cotton & 
Salwen (1981). In all the computations, 35 basis functions were found sufficient to 
give four-digit accuracy in the first three eigenvalues. 

Our primary interest is to find the marginal stability curve, about which a weakly 
nonlinear stability analysis is to be made. In  our computation, a point is said to be 
on the marginal stability curve when the absolute value of the growth rate is less 
than ; we believe that this growth rate criterion provides at least three-figure 
accuracy for the combinations of parameters (R,  q ;  m, k )  on the marginal stability 
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curve. Figure 1 shows the marginal stability curve in the (R,q)-plane. In  the limits 
of fast rotation and slow rotation, the limits found by Pedley (1969) and Mackrodt 
(1976) are respectively captured. The first two columns of table 2 give information 
for a collection of points on the marginal stability curve. They give the (R, q )  pair on 
the marginal stability curve, and the axial wavenumber k of the marginally stable 
perturbation. The modes giving rise to  the marginal stability all have an azimuthal 
wavenumber of m = 1. These modes are called ' bending modes ' by Leibovich, Brown 
& Pate1 (1986), who point out that  these are the only modes allowing particle 
deflection from the axis of the pipe, an important phenomenon observed in vortex 
breakdown. 

I n  the study of the nonlinear evolution of the wave packet undertaken in the next 
section, the form of the dispersion relation near the marginal stability curve is 
needed. Near a point on the marginal stability curve, (Rc,qc; m = 1, k c )  for example, 

(11) 
we have 

where wo is the eigenvalue of the linear problem calculated for parameters on the 
marginal stability curve ; it is a real number. Since on the marginal stability curve, 
(Im w ) k  = 0, the group velocity cg = w, is also real. The parameters wkk, wR,  w, are 
generally complex. 

To find the constants in the linear dispersion relation, we take the partial 
derivative of the linear problem with respect to k ,  R ,  q respectively. Let 4 denote 
the partial derivative of the matrix M with respect to its first argument, etc. We then 

(12) 

have 
( -  iw, M, + iM,)Qi = - Mak, 
(-iw, M,+ M4)@ = - Ma,, 
( - iw, M, + M5)@ = - Me,. 

Since the matrix operator on the right-hand side is the same as the original linear 
equation, solvability conditions have to be satisfied in order for a solution of the 
above equations to exist. The solvability condition is 

(LHS, Y) = 0, 
where LHS stands for the left-hand side of the equation, and W is the solution of the 
linear algebraic problem adjoint to  MQi = 0. The matrix for the adjoint problem is 
simply the Hermitian of M. The inner product is defined by 

w = w0 +wk(k-kc)  +$wkk(k -kc ) '+  w,(R-R,) +wq(q-qc) +. .. 3 

i 

n 

i-1 
(u,  v> = ui v:, (13) 

where an asterisk represents the complex conjugate. 
Applying the solvability condition to the above equations, we have 

i wk<M1 @? Y) = (M2 @? Y), 
iw,<M, Qi, Y) = <M4 Qi, Y), 
iwq(MIQi, Y) = (M4@, Y), 

which allows us to solve for W k , w R , w , ,  

To find wkk, we take the derivative with respect to k once more to get 

[ - iw,, M, - (wr ) ,  MI, + 2wk M,, - M,,] @ + 2i( -wk M, + M,) @, = - M @ k k .  (15) 
Again, the solvability condition yields 

( [ - i ( W , ) 2 M 1 1  +WkM12-$M22]@, Y)+i<[-wkM,fM,]@k, vl> = $iw,,(M,@, Y) 
(16) which can be solved for wkk. 
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to figure 2. 

Results from the above numerical calculation agreed with those from an 
alternative method, which used a second-order finite-difference representation for 
the derivatives. In this alternative approach, linear eigenvalue problems were solved 
repeatedly to provide the complex frequency at points needed to calculate the finite- 
difference representation. In figure 2, we show the values o f c  = w l k .  The phase speed 
c gives the speed of a wavelet ; and it is seen that c changes sign at R x 95. Below this 
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FIGURE 5. The derivative of the complex frequency (w,) with respect to axial Reynolds number 
for the neutral modes of figures 1 4 .  (a) Real part, (b )  imaginary part. 
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value, c is negative, which means that wavelets propagate upstream. Above this 
valve, c is positive, and wavelets propagate downstream. In figure 3, we plot the 
values of w .  Since m = 1 on the marginal stability curve, d = w / m  = w gives the 
angular velocity of the constant phase surface. In  the laboratory frame, the constant 
phase surface rotates in the same direction as the base flow for R < 95 and rotates 
in the opposite direction for R > 95. Although the perturbation rotates in the same 
direction as the base flow for R < 95, the rotation is smaller than that of the base 
flow. Thus, in the frame rotating with the base flow, the perturbations rotate in a 
retrograde fashion, with direction opposite to that of base flow as observed in the 
laboratory frame. In figure 4, the values of cg = dw/dk are shown. It is seen that the 
group speed cg is positive for all the points along the marginal stability curve, which 
means that the wave group and wave energy propagate downstream. 

The values of wR, wq on the marginal stability curve are shown in figure 5 and figure 
6 respectively. The imaginary part of both wR and wq are positive. Thus, on the 
marginal stability curve, if we increase R with q fixed or if we increase q with R fixed, 
the flow will pass the stability boundary with a non-zero speed and the bifurcation 
is strict. 

The second derivative of the dispersion relation, wkk, is shown in figure 7. The 
magnitude of the imaginary part of this quantity determines the width of the wave 
band that is excited when we pass through the marginal stability curve. 

4. Weakly nonlinear analysis 
Let (R,,q,) be a point on the linear marginal stability curve. We study weakly 

supercritical parameter ranges, in which R is slightly greater than R, or q is slightly 
greater than qc or both. To be specific, we consider 

where E -4 1 is a small parameter (see figure 8). 
In the region of the parameters considered, a band of waves of width E centred a t  

the marginally stable wavenumber will become linearly unstable with a growth rate 
proportional to e2 (see figure 9). These waves will be allowed to be modulated both 
in time and in space. The modulation can be described in terms of the following slow 
variables : 

The perturbation field has the following expansion : 

R-R, = a2X,  q-q, = s2$, 

= E t ,  T, = €9, 2, = E Z .  

li = € l i ,+E21 i ,+€31 i3+  ... . (17) 
The rationale for the above scalings is standard: the width of the unstable 

wavenumber band is of order E ,  which gives the slow spatial sale. These unstable 
waves have a phase speed which is different from the phase speed on the marginal 
stability curve by an amount of order E ,  and a growth rate of order 2 ;  thus we have 
the two slow timescales. The size of the perturbation is determined by the balance 
of the nonlinear term and the time growth term. Since the nonlinearity is quadratic, 
the nonlinear contribution comes in a t  the third order, thus we have 

Im ( w )  Ili( - lliI3, 
which yields - E .  

It is well known that the wave system travels at the group speed. Thus, the 
number of slow variables may be reduced from three to two by transforming to a 
coordinate system which moves a t  the group speed. The new slow variables in such 
a system are: 

2 = Z , - c g T ,  = s ( z - c g t ) ,  T = T, = 2 t .  
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In the multiscale technique, we have the following transformation : 

a a  a a a  a a 
at at gaz aT' a2 a Z  az -+-+€-, -+--€C -+2- 

and thus 

a a a a  
- - - - ; R , q  
at ' a Z  ' ae ' ar 

where 

Upon substituting the above into the governing equations, we have a series of 
equations for different orders of e.  
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FIQURE 8. Sketch of the band of unstable waves at slightly supercritical conditions for which 
the weakly nonlinear analysis is done. 

- ( w l ) k t  lol 

10' 

100 

This is the linear problem we have treated and its solution is given by 

a, = ApE+c.c., (19) 
where the function Q, is the same linear eigenfunction as was found previously ; C.C. 
stands for the complex conjugate, for the physical perturbation field has to be real. 
Instead of being an arbitrary constant, the amplitude A is a function of the slow 

' (b) 
r 

1 

1 

variables 2, T now, i.e. 
A = A(2,  T). 
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FIGURE 9. Sketch of the linear growth rates corresponding to figure 8. 

To o ( E 2 )  
L(0)i2 = N(il, il)- L(l)fil 

= A2E2N(q,  9) + IAI2N(q, q*) - L‘”AEq+ C.C. . (20) 
Because of the homogeneity of the operator L in the x ,  8 ,  t-directions, the solution 

of the above equation can be written as 

We then have 

I 
ql = cgL1q-L2q. 

The second harmonics term qz can be easily found, because the differential 
operator L( -2iw, 2ik, 2im, alar;R, q )  is invertible. In the discretized algebraic 
problem, the matrix M( -2iw, 2ik, 2im; R, q )  is invertible for (R, q ;  k, m) on the 
marginal stability curve, so the discrete form of qz is readily found. 

In finding the mean flow distortion term lo, we found that the operator L(0, O , O ,  
a/&; R, q )  is singular and the matrix M ( O , O ,  0; R, q )  cannot be inverted. However, 
this singularity was found to correspond to the fact that the pressure perturbation 
is indeterminate up to an arbitrary constant. Further investigation shows that the 
velocity components are decoupled from the pressure in this case. Although the 
pressure perturbation is not determined, the velocity perturbation in the mean flow 
distortion is determined, and could be easily found. Thus, the singularity in the 
operator L(O,O,O,alar;R,q) does not cause us any difficulty in carrying out the 
amplitude expansion, for the nonlinearity involves the velocity perturbations only. 

If we had not assumed that the wave system travels a t  the group speed, and 
worked on the three slow variables Z1,Tl,T2, we would have found that the 
solvability condition for the third equation would lead to  the result that the wave 
system travels at the group speed. Now, although L( - io, ik, im, a/&; R, q) is singular, 
qI can still be found because the right-hand side satisfies the solvability condition. 
The solution consists of two parts, the general solution of the homogeneous problem, 
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which is proportional to p, and a particular solution which depends on the right-hand 
side. In  the numerical computation, the particular solution was found by a singular- 
value decomposition. 

TO o(S3) 

L ‘ O ’ f i ,  = N(fi2, fil) + N(fil, f i 2 )  - L(l ) i2  - L‘”6, 

= IAIzmN(P2, P*) +N(PO, PI +“P, Po) fN(P*,  P2)l 

aA 
-L(’)-Eql+ az L(2)AEq+c.c.+n.s.t., (23 ) 

where n.s.t. stands for the non-secular terms. 

which is given by 
Application of the solvability condition to (23) leads to the amplitude equation, 

a2A --- a’ i i W k k T  = -i(w,R++w,cj)A+PIA12A. 
aT az (24) 

This is the Ginzburg-Landau equation for the evolution of the amplitude of the wave 
system. This equation would reduce to  the Stuart-Landau equation if we drop the 
spatial modulation term, which corresponds to the situation where only the simple 
wave with wavenumber k, is considered. 

In  (24), 8, the Landau constant, is calculated from 

where b is a vector, the components of which are the Chebyshev expansion of the 
nonlinear terms given by 

Again, the r2 factor was used to  multiply the Navier-Stokes equation to eliminate the 
coordinate singularity. The Landau constant found this way was in agreement with 
those listed in Mahalov & Leibovich (1989) which uses an entirely different numerical 
procedure. 

The real part of the Landau constant determines the nature of bifurcation when 
the flow passes the marginal stability curve. lfp, < 0, the bifurcation is supercritical, 
and if pr > 0, the bifurcation is subcritical. If the bifurcation is subcritical, the effect 
of the nonlinearity is destabilizing and a nonlinear equilibrium may be found in the 
regions where the linear analysis predicts stability, due t o  the nonlinear effect. I n  the 
case of the rotating pipe flow with large R, the critical q to  render the flow marginally 
stable is very small (proportional to  O(R-l)) .  If the bifurcation were subcritical, it is 
conceivable that bifurcated states of motion in the non-rotating pipe flow might be 
traced as the limit of the rotating pipe flow when the rotation rate goes to  zero. This 
might shed light on the observed transition in the non-rotating pipe flow where the 
linear analysis predicts stability. However, the numerical calculations show that the 
bifurcation is supercritical a t  all points calculated along the marginal stability curve 
on the (R, q)-plane. The values of p for Reynolds number up to R = 10000 are listed 
in table 2. Since the bifurcation is supercritical, nonlinear effects will be stabilizing. 
The region of interest will be where the linear analysis predicts instability and there 
will be competition between linear and nonlinear effects. This is the subject of the 
next section. 



Nonlinear dynamics near the stability margin in rotating pipe flow 343 

5. Modulated travelling wave solution and its linear stability 
The Ginzburg-Landau equation arises in other fluid dynamics problems, and in 

other branches of the physical sciences. It describes the evolution of the amplitude 
of a wave system near the critical state. There are a number of studies of this 
equation, concerning the route to chaos that it reveals. Our interest here, more 
restricted, is to see whether the travelling wave solutions of the Ginzburg-Landau 
equation, appropriate to the marginal stability curve for rotating pipe flow, are 
linearly stable. 

Let (T = -i(u,&+uqa). (26) 

The linearly unstable region we are studying is given by 

ar 2 0. 

The Ginzburg-Landau equation may be normalized by the following trans- 
formation : 

If we choose aA = ( - ar/Pr)t, aT = a;l, 

the Ginzburg-Landau equation becomes 

A = a,exp(iaiT)d, T = aTr ,  Z = aZE. 

uz = ( - ~,/2a,)t ,  A = w k k  

where 

and 
c1 = l+icd, c2 = l + i c ,  

' d  = Ar/Ai, 'n = pi//%. 
cd ,  c ,  are the new independent parameters entering the Ginzburg-Landau equation. 
Their signs determine the nature of the solution. In the case of flow in a rotating pipe, 
the values of cd ,  c ,  along the marginal stability curve are listed in table 2. From the 
numerical results, it is seen that 

cd < 0,  and c ,  > 0. 

The Ginzburg-Landau equation admits solutions of the following type : 

.Ae =~,exp[ i (y ,7+p ,~ )1  -A,E, ,  (28) 

The solution thus represents a travelling wave. Since the above solution is in slow 
variables and A is the amplitude of the travelling wave in the fast variables, the 
solution represents a modulation of the wave given by the linear theory. 

The family of travelling wave solutions of the Ginzburg-Landau equation is 
parametrized by p,. The range of p, is confined to the region where the linear theory 
predicts instability, which gives 

When po = 0, the resulting solution is called the Stokes solution, and corresponds 
to the modulation to the original travelling wave in time only. 

For p, = 0, the travelling wave solution reduces to the Stokes solution. The 
condition for its instability is given by 

- 1  <po < 1 .  

N =  1 + C d C ,  < 0.  (30) 
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t 

I 

FIGURE 10. An illustration of window of stability for stable modulated waves, bounded by an 
Eckhaus instability. Instability is shown by broken lines, stability by the solid line. 

This is the Newell condition (Newell 1974) for the instability of the spatially 
periodic wave with k = k, to sideband perturbations. 

The values of N along the marginal stability curve are listed in table 2. It is found 
that N > 0 everywhere. Thus, the Newell condition for instability is not satisfied, all 
the waves with spatial wavenumber k, are stable along the marginal stability curve. 

The stability for general p0 was treated by Stuart & DiPrima (1978). The range of 
po for stability is 

- P n  < PO Pnr 

where 

the values of pn are also listed in table 2. The waves will be unstable if the 
wavenumber p0 is in the following window: 

The regions of stability and instability are sketched in figure 10. 
p ;<p:a .  (31) 

6. Discussion 
We have studied the weakly nonlinear evolution of the wave system near the 

marginal stability curve for flow in a rotating pipe. As the marginal stability curve 
is crossed, the flow undergoes a supercritical Hopf bifurcation, and the steady-state 
base flow is replaced by a flow which is periodic in both time and space. This periodic 
flow is a travelling wave, modulated with po as the modulation wavenumber. The 
modulated travelling wave is unstable to perturbations of sideband type if the 
modulation wavenumber falls inside an instability window, the width of which varies 
on the marginal stability curve. I n  the fast rotation limit, the width is found to be 
the same as its counterpart in BBnard convection, and other flows where the principle 
of exchange of stabilities holds (see Eckhaus 1965). It is worth noting that the phase 
speed is very large in the fast rotation limit in rotating pipe flow. 

Since we have restricted our stability study to perturbations of the sideband form, 
which is a rather special form, we have to interpret with reservation when our study 
shows that the solution is stable. The solution might be unstable to perturbations of 
other form in parameter regions where the solution is stable to the perturbations of the 
sideband type. 



Nonlinear dynamics near the stability rnargin i n  rotating pipe flow 345 

In regions where the travelling wave is unstable to perturbations of sideband type, 
it is of interest to know the further evolution of the motion. Keefe (1985), Sirovich 
& Newton (1986), Bernoff (1988) and others have carried out numerical computations 
for the evolution of the solutions of the Ginzburg-Landau equation. They find that 
the solution undergoes a sequence of transitions to limit cycles, tori, and chaos. These 
authors treat the Ginzburg-Landau equation in a parameter range in which the 
Stokes solution is unstable. In our case, the Stokes solution is stable, while the 
modulated travelling wave solutions are unstable. However, it is expected that the 
evolution would lead to a similar process of transition to chaos. Of course, this 
question can be answered with certainty only if a numerical computation is carried 
out for the solutions of the Ginzburg-Landau equations in flows applicable to our 
case. 

Even if these unstable solutions are found to lead to chaos, their relevance to the 
transition to turbulence in a rotating pipe is still an open question, since the 
NavierStokes equations reduce to the Ginzburg-Landau equation only for small 
departures from the basic state. In the specific case of flow in a rotating pipe, a direct 
numerical simulation would be helpful in answering this question and establishing 
the link between the solutions of the Ginzburg-Landau equation and those of the 
NavierStokes equations. 

This work was supported by the Air Force Office of Scientific Research under 
contract AFOSR-89-0346 monitored by Dr L. Sakell. 

Appendix A. Operators L and N 
In the cylindrical coordinate system ( z ,  r ,  e ) ,  the non-zero entries of L are 

and the non-zero entries of N are 

where 
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The matrix A may be written 

All 

A = [  

Elements of the block matrix A,, are given by 

where y = 2r-  1. Similar expressions are obtained for A,,, . .., A,,. The elements of 
A,, are given by 

with similar expressions for A4,, etc. 
The matrix B may be written 

B12 '13 '14 

'22 '23 

= F:: B,, B,, 

'41 B42 '43 '44 

with block matrix elements 

Bll(i,j) = B22(iJl = B33(ij) = (r"(y), T , ( Y ) )  

and all the other entries are zero. 

enforcing the boundary conditions for the Chebyshev representation of the field. 
The last rows of the block matrices are replaced by the equations obtained from 
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